
CSCI5550 Advanced File and Storage Systems

Lecture 08:

Persistent Memory

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Persistent Memory: Why and How

– Emerging Persistent Memory Technologies

– Characteristics and Integration Options

• Byte-addressable Persistent FS

– System Architecture

– Consistency: Short-Circuit Shadow Paging

– Write Ordering: Epoch Barriers

• Persistent Memory FS

– System Architecture

– Optimizations for Byte-Addressable PM

– Hybrid Approach for Consistency

– Protection from Stray Writes

– Write Ordering and Durability
CSCI5550 Lec08: Persistent Memory 2

Application

File System

Block Layer

Device Driver

Persistent Mem

User

Kernel

I/O Stack

CSCI5550 Lec08: Persistent MemoryPersistent (or Non-volatile)

Preface: Memory Hierarchy Pyramid

3

CPU

Cache
(e.g., SRAM)

(e.g., registers)

Main Memory
(e.g., DRAM)

Secondary Storage
(e.g., Flash, SMR, HDD)

Volume

Faster but volatile

memory for

process execution

Cheaper but non-

volatile memory

for mass storage

Mix-and-Match: Best of ALL

Why Persistent Memory

• Persistent memory (PM) might revolutionize the

memory hierarchy due to “double-faced” advantages:

– Byte-addressability as main memory;

– Comparable performance as main memory;

– Much higher density than main memory;

– Almost zero static power consumption;

– Non-volatility as secondary storage.

• PM has several implications on both OS and FS.

– A large amount of work must be carried out.

• PM is just a collective term.

– It is often called non-volatile memory (NVM) as well.

– Many different “memory technologies” have emerged.

• Flash memory is considered as a pioneer NVM.
CSCI5550 Lec08: Persistent Memory 4

Metal

LRS HRS

Insulator

Emerging Persistent Memories (1/2)

• Resistive Memory (ReRAM)

• Magnetoresistive RAM (MRAM)

– Spin Torque Transfer RAM (STT-RAM)

CSCI5550 Lec08: Persistent Memory 5

– By changing the resistance

value of the insulators based

on the magnitude and

polarity of applied voltage:

• Low Resistive State

• High Resistive State

RESET

SET

• By changing the magnetization

direction of the free layer with

high positive or high negative

voltage difference:

– Same as the pinned layer

– Opposite as the pinned layer

Emerging NVM: A Survey on Architectural Integration and Research Challenges (TODAES'17)

Ferro-Electric

Capacitor (FCAP)

• Phase Change Memory (PRAM or PCM)

• Ferroelectric Memory (FeRAM)

Emerging Persistent Memories (2/2)

CSCI5550 Lec08: Persistent Memory 6

– By heating the phase

change material with

different temperatures

and time durations:

• Amorphous Phase

• Crystalline Phase

R
E

S
E

T

S
E

T

– By characterizing the ferro-

electric capacitor (FCAP) as

two remnant reversible

polarization states:

• Positive Remnant Polarization

• Negative Remnant Polarization

S
E

T

R
E

S
E

T

Emerging NVM: A Survey on Architectural Integration and Research Challenges (TODAES'17)

CSCI5550 Lec08: Persistent Memory

Characteristics of Memory Technologies

SRAM
STT-

RAM
DRAM

Re-

RAM
PCM

Fe-

RAM

NAND

Flash
HDD

Volatility 𝑉 𝑵𝑽 𝑉 𝑵𝑽 𝑵𝑽 𝑵𝑽 𝑵𝑽 𝑵𝑽

Cell Size

(F2)

120 −
200

6 − 50
60 −
100

4 − 10 4 − 12 6 − 40 4 − 6 𝑁/𝐴

Write

Endurance
1016

1012 −
1015

> 1015
108 −
1011

108 −
109

1014 −
1015

104 −
105

> 1015

(∗
𝑚𝑒𝑐ℎ)

Read

Latency

~0.2 −
2 𝑛𝑠

2 −
35 𝑛𝑠

~10 𝑛𝑠 ~10 𝑛𝑠
20 −
60 𝑛𝑠

20 −
80 𝑛𝑠

15 −
35 𝑢𝑠

3 − 5
𝑚𝑠

Write

Latency

~0.2 −
2 𝑛𝑠

3 −
50 𝑛𝑠

~10 𝑛𝑠 ~50 𝑛𝑠
20 −
150 𝑛𝑠

50 −
75 𝑛𝑠

200 −
500 𝑢𝑠

3 − 5
𝑚𝑠

Read

Energy
𝐿𝑜𝑤 𝐿𝑜𝑤 𝑀𝑒𝑑𝑖𝑢𝑚 𝐿𝑜𝑤 𝑀𝑒𝑑𝑖𝑢𝑚 𝐿𝑜𝑤 𝐿𝑜𝑤

Write

Energy
𝐿𝑜𝑤 𝐻𝑖𝑔ℎ 𝑀𝑒𝑑𝑖𝑢𝑚 𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤

Static

Power
𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝑀𝑒𝑑𝑖𝑢𝑚 𝐿𝑜𝑤 𝐿𝑜𝑤 𝐿𝑜𝑤 𝐿𝑜𝑤

7Emerging NVM: A Survey on Architectural Integration and Research Challenges (TODAES'17)

(∗
𝑚
𝑒𝑐
ℎ
𝑎
𝑛
𝑖𝑐
𝑎
𝑙

𝑝
𝑎
𝑟𝑡
𝑠)

Block-BasedByte-Addressable

Double-Faced Characteristics of PMs

• Strengths

Byte-addressability (as SRAM and DRAM)

• Each byte can be individually addressed.

Bit-alterability (as SRAM and DRAM)

• Each cell can be individually altered.

Non-volatility (as SSD and HDD)

Higher density (than SRAM and DRAM)

Almost zero static power

• Shortcomings

Less write endurance (than SRAM and DRAM)

Asymmetric read-write latency

Asymmetric read-write energy consumption

CSCI5550 Lec08: Persistent Memory 8Write is the common Achilles heels of PMs!

PM Integration Options

• PM can be integrated into the memory hierarchy:

– Horizontally: Supplement a given memory in the hierarchy.

– Vertically: Shift down a given memory, or even replace it.

• PM can be exploited as:

– Processor Cache

• L1 or L2 cache is accessed at a high frequency: Most PMs are

hard to offer very low latency and very high endurance is required.

• Last-level caches are designed to reduce off-chip data movements:

Most PMs can offer high density (to achieve large capacity of LLCs).

– Main Memory

• Most PMs can offer very appealing performance for main memory.

– Secondary Storage

• Similar to the pioneer PM (i.e., flash memory), some PMs can also

offer high density, low static power, and faster I/O performance.

CSCI5550 Lec08: Persistent Memory 9How to exploit PM to make storage systems better?

Outline

• Persistent Memory: Why and How

– Emerging Persistent Memory Technologies

– Characteristics and Integration Options

• Byte-addressable Persistent FS

– System Architecture

– Consistency: Short-Circuit Shadow Paging

– Write Ordering: Epoch Barriers

• Persistent Memory FS

– System Architecture

– Optimizations for Byte-Addressable PM

– Hybrid Approach for Consistency

– Protection from Stray Writes

– Write Ordering and Durability
CSCI5550 Lec08: Persistent Memory 10

Application

File System

Block Layer

Device Driver

Persistent Mem

User

Kernel

I/O Stack

Better I/O Through Byte-Addressable, Persistent Memory (SOSP'09)

Byte-addressable Persistent FS (BPFS)

• Existing file/storage systems often face a trade-off

among durability, consistency, and performance.

CSCI5550 Lec08: Persistent Memory 11

• BPFS is designed to leverage the new persistent,

byte addressable memory.

– Fast, byte-addressable, and non-volatile!

– Data can be buffered in fast,

byte-addressable but

volatile media with the risk

of losing data.

– Data must be persisted on

non-volatile media, but

these devices support only

slow and bulk data transfers.

Cache

Main Memory

Secondary Storage

CPU

cache
line byte addr

wo
rd byte addr

block block addr

System Architecture of BPFS

• L1 and L2 caches are enabled

normally for better performance.

• DRAM and PM are placed on the

memory bus side-by-side.

– Why? Keeping PM behind I/O bus

prohibits the use of byte-addressability!

CSCI5550 Lec08: Persistent Memory 12

DRAM PM

SSD / HDD

I/O Bus

Memory Bus

L2

L1

CPU

64-bit Address

– That is, both DRAM and PM are

exposed directly to the CPU.

• The 64-bit address is shared.

• CPU can directly address PM with

common load/store instructions.

• DRAM buffer cache is not used.
• DRAM is used for other purposes.

• Persistent storage is not used.

file
I/O

CSCI5550 Lec08: Persistent Memory Better I/O Through Byte-Addressable, Persistent Memory (SOSP'09)

File System Layout

• BPFS is composed “trees” of fixed-size blocks.

– Fixed-sized blocks ease the allocation/deallocation of PM.

– There’s only one path from the root to any given node.

13

Each inode

represents a

file or directory.

A single file

containing

all inodes

Directory

entries

User

Data

It’s possible to

“short circuit”

the tree update.

Outline

• Persistent Memory: Why and How

– Emerging Persistent Memory Technologies

– Characteristics and Integration Options

• Byte-addressable Persistent FS

– System Architecture

– Consistency: Short-Circuit Shadow Paging

– Write Ordering: Epoch Barriers

• Persistent Memory FS

– System Architecture

– Optimizations for Byte-Addressable PM

– Hybrid Approach for Consistency

– Protection from Stray Writes

– Write Ordering and Durability
CSCI5550 Lec08: Persistent Memory 14

Application

File System

Block Layer

Device Driver

Persistent Mem

User

Kernel

I/O Stack

Better I/O Through Byte-Addressable, Persistent Memory (SOSP'09)

Enforcing FS Consistency

• What happens if FS crashes during an update?

• Most file/storage systems ensure the consistency of

updates by two techniques:

 Write-ahead Logging (or Journaling)

• Write updates to a reserved and separate area (often as a

sequential log file) before updating the corresponding locations.

 Shadow Paging

• Use copy-on-write (or out-of-place update) to perform updates in

different locations, making the original data untouched.

CSCI5550 Lec08: Persistent Memory 15

Consistency

Problem!

Review #1: Journaling (1/2)

• Idea:  Write to journal, then  write to file system

• Problem: Consistent, but all data is written twice.

– Most systems journal only metadata, but problem still exists!

CSCI5550 Lec08: Persistent Memory 16



commit



chckpoint

Review #1: Journaling (2/2)

CSCI5550 Lec08: Persistent Memory 17

Data Journaling

TxB Metadata Data TxE Metadata Data

Issue Issue Issue

Complete Complete Complete

Issue

Complete

Issue Issue

Complete Complete

Metadata Journaling

TxB Metadata TxE Metadata Data

Issue Issue Issue

Complete Complete Complete

Issue

Complete

Issue

Complete

Review #2: Shadow Page

• Idea: Use copy-on-write up to root of the file system

• Problems:

– Any change requires “bubbling-up” of updates to the root.

– Even small writes require large copying overhead.
CSCI5550 Lec08: Persistent Memory 18

copy-on-write

BPFS: Short-Circuit Shadow Paging (1/3)

• BPFS leverages the byte-addressability of PM to

implement the “short-circuit” shadow paging.

– Idea: Perform atomic in-place update for small writes to

avoid (or “short-circuit”) propagating copies to the root.

• Costly copy-on-writes can be restricted to a small subtree of FS.

• The atomicity of small in-place update must be ensured by hardware.

CSCI5550 Lec08: Persistent Memory 19 copy-on-write

 short-circuit

Better I/O Through Byte-Addressable, Persistent Memory (SOSP'09)

BPFS: Short-Circuit Shadow Paging (2/3)

CSCI5550 Lec08: Persistent Memory 20

commit
point

• BPFS does not need to copy the entire tree “above”

the commit point (i.e., short-circuit point).

Better I/O Through Byte-Addressable, Persistent Memory (SOSP'09)

BPFS: Short-Circuit Shadow Paging (3/3)

• SCSP guarantees the consistency of data updates by

three distinct methods via atomic in-place update:

 In-place Update: Perform 64-bit (8-byte) atomic in-place

write at highest efficiency for both metadata and data.

• How to ensure atomicity? Augmenting a capacitor on PM.

 In-place Append: Perform in-place appends regardless of

the size, then atomically “commit” the file size in the inode.

 Partial Copy-on-Write: Perform regular copy-on-writes

until the write can be “short-circuited” by an atomic update.

CSCI5550 Lec08: Persistent Memory 21



In-place

Updates



In-place

Appends



Partial

CoW
short

circuit

 file

size

update

 in-place appends

SCSP Limitation

• Cross-directory rename may still bubble the copy-

on-writes up to the common ancestor (even the root!).
CSCI5550 Lec08: Persistent Memory 22

Outline

• Persistent Memory: Why and How

– Emerging Persistent Memory Technologies

– Characteristics and Integration Options

• Byte-addressable Persistent FS

– System Architecture

– Consistency: Short-Circuit Shadow Paging

– Write Ordering: Epoch Barriers

• Persistent Memory FS

– System Architecture

– Optimizations for Byte-Addressable PM

– Hybrid Approach for Consistency

– Protection from Stray Writes

– Write Ordering and Durability
CSCI5550 Lec08: Persistent Memory 23

Application

File System

Block Layer

Device Driver

Persistent Mem

User

Kernel

I/O Stack

Better I/O Through Byte-Addressable, Persistent Memory (SOSP'09)

L1/L2 Cache

Persistent Memory

r
e
o
r
d
e
r
e
d

w
r
i
t
e

Enforcing Ordering of Writes (1/2)

• Existing cache hierarchies and memory controllers

may re-order writes for improve performance.

• However, the write order is crucial for PM consistency.

CSCI5550 Lec08: Persistent Memory 24

L1/L2 Cache

short-circuit

Persistent Memory



CRASH

LOST
L1/L2 Cache

Persistent Memory



time

Enforcing Ordering of Writes (2/2)

• Possible Solutions: Costly in terms of performance!

CSCI5550 Lec08: Persistent Memory 25

 Uncached PM

• Disable all cache(s)

Persistent Memory

u
n
c
a
c
h
e
d
w
r
i
t
e



u
n
c
a
c
h
e
d
w
r
i
t
e



L1/L2 Cache

Persistent Memory

w
r
i
t
e

t
h
r
o
u
g
h



w
r
i
t
e

t
h
r
o
u
g
h



 Write Through

• Update cache and

memory concurrently

L1/L2 Cache

Persistent Memory

flush

 Cache Flush

• Flush entire cache at

each memory barrier

Review: Memory Barrier

• Memory barriers (e.g., x86 mfence)

ensure that all CPUs have a

consistent view of memory.

– It does not matter in what order data is

actually written back to memory.

• After all, with the volatile memory, the

ordering issue is irrelevant, while the cache

coherence issue is critical.

CSCI5550 Lec08: Persistent Memory 26

• Consider writes A and B are separated by an mfence:

– The mfence only guarantees that A will be written to the

cache (and made visible to all other CPUs via cache

coherence) before B is written to the cache;

– The mfence does not ensure that A will be written back to

memory before B is written to the memory.

CPU 0 CPU 1

Cache Cache

Main Memory

consistent view

L1/L2 Cache

Persistent Memory

L1/L2 Cache

Persistent Memory

L1/L2 Cache

Persistent Memory

time

Ineligible for

eviction!

BPFS: Cache + Epoch Barriers (1/2)

• BPFS embraces division of labor between SW & HW:

– Software issues write barriers that delimit a sequence

of writes called an epoch;

– Hardware guarantees that epochs are evicted from cache

to PM in order (but writes can be reordered within an epoch).

CSCI5550 Lec08: Persistent Memory 27

Software

epoch 1

epoch 2

BPFS: Cache + Epoch Barriers (2/2)

• The hardware support for epoch must includes the

following modifications to the PC architecture:

 Each processor must track the current epoch to maintain

ordering among writes with an epoch ID counter.

• It is incremented by one each time the processor commits an epoch.

 Each cache line is extended with the following two values:

• A reference bit to indicate whether the cached data references PM.

• An epoch ID to indicate the epoch to which this cache line belongs.

 The cache replacement logic is also extended to ensure

the evictions of cache lines are in epoch order strictly.

• The cache controller tracks the oldest epoch in the cache, and

considers cache lines of newer epochs to be ineligible for eviction.

 The memory controller must ensure a write cannot be

reflected to PM before all in-flight evictions are performed.

CSCI5550 Lec08: Persistent Memory 28

Outline

• Persistent Memory: Why and How

– Emerging Persistent Memory Technologies

– Characteristics and Integration Options

• Byte-addressable Persistent FS

– System Architecture

– Consistency: Short-Circuit Shadow Paging

– Write Ordering: Epoch Barriers

• Persistent Memory FS

– System Architecture

– Optimizations for Byte-Addressable PM

– Hybrid Approach for Consistency

– Protection from Stray Writes

– Write Ordering and Durability
CSCI5550 Lec08: Persistent Memory 29

Application

File System

Block Layer

Device Driver

Persistent Mem

User

Kernel

I/O Stack

System Software for Persistent Memory (EuroSys'14)

System Architecture of PMFS

• System software could manage PM in several ways:

 Extending virtual memory manger (VMM) to manage PM

 Utilizing PM as a block device with an existing file system

 Designing a new file system optimized for PM

CSCI5550 Lec08: Persistent Memory 30

To simplify the

use of mmap to

access PM,

PMLib offers

programming

models and

libraries.

(future work)

The OS VMM

continues to

manage DRAM.

PM is managed by PMFS,

and WL is done by HW.

Block-based File System PMFS

Traditional FS vs. PMFS

• PMFS eliminates copy overheads and offers essential

benefits (up to 22𝑋) to legacy applications by:

 Exploiting the PM’s byte-addressability;

 Avoiding the block layer; and

 Mapping PM directly to address space of applications.

CSCI5550 Lec08: Persistent Memory 31

User Space
(private)

Kernel Space
(shared)

Page

Process Process Process Process

Kernel

V
ir

tu
a

l
A

d
d

re
s
s

 S
p

a
c
e

(3
2
-b

it
)

User Space
(private)

Kernel Space
(shared)

Page

Process Process Process Process

Kernel

0xFFFFFFFF

0x00000000

0x3FFFFFFF

Physical Memory Frame

Physical

Memory

Physical Address

Review: Address Space in Linux

CSCI5550 Lec08: Persistent Memory 32https://blog.csdn.net/Takatsukii/article/details/41652127

0x00000000 0x????????

The page table keeps the mapping between virtual addresses and physical addresses.

Review: Process Address Space

CSCI5550 Lec08: Persistent Memory 33https://stackoverflow.com/questions/9511982/virtual-address-space-in-the-context-of-programming?lq=1

Review: Transition between User/Kernel

 User code actively issues a system call.

 The mode is changed to the kernel mode.

 The system call handler (kernel code) is executed:

 Privileged instructions or shared kernel space may be used.

 The mode is changed back to the user mode.

• Interrupt/exceptions may also trigger mode transition.

CSCI5550 Lec08: Persistent Memory 34https://slideplayer.com/slide/13163573/









Outline

• Persistent Memory: Why and How

– Emerging Persistent Memory Technologies

– Characteristics and Integration Options

• Byte-addressable Persistent FS

– System Architecture

– Consistency: Short-Circuit Shadow Paging

– Write Ordering: Epoch Barriers

• Persistent Memory FS

– System Architecture

– Optimizations for Byte-Addressable PM

– Hybrid Approach for Consistency

– Protection from Stray Writes

– Write Ordering and Durability
CSCI5550 Lec08: Persistent Memory 35

Application

File System

Block Layer

Device Driver

Persistent Mem

User

Kernel

I/O Stack

System Software for Persistent Memory (EuroSys'14)

PM Optimizations: FS Layout on “PM”

CSCI5550 Lec08: Persistent Memory 37

• PM Address Space:

 Superblock and its

redundant copy

 A journal area

(called PMFS-Log)

 Dynamic allocated

“pages”

• B-trees are used to

organize the

metadata:

 Inode table

 Directory inodes

 File inodes

PM Optimizations: Allocation

• Modern FSs are extent-based (e.g., ext4, btrfs), while

some older FSs are indirect block-based (e.g., ext2).

CSCI5550 Lec08: Persistent Memory 38

• Allocations in PMFS are

page-based.

– 4KB pages for metadata

(i.e., internal nodes);

– 4KB, 2MB, or 1GB pages

for data (i.e., leaf nodes).

• See paper for more

detailed discussions.

• PMFS coalesces

adjacent pages to avoid

major fragmentation.

Recall: Block Allocation

• Block Allocation: How to allocate disk space to files

• It is a typical way to classify file system designs:

 Indexed Allocation: an index block keeps block pointers

• Examples: UNIX FS, FFS, ext2, LFS

 Linked Allocation: each file is of linked blocks

• Examples: FAT

 Contiguous Allocation: each file is of contiguous blocks

• Examples: ext4

CSCI5550 Lec04: File System Designs 39

PM Optimizations: Memory-mapped I/O

• PMFS exploits mmap to map file data directly into the

application’s virtual address space.

– Applications can access PM directly and efficiently without

unnecessary copies (to DRAM) and software overheads.

CSCI5550 Lec08: Persistent Memory 40

Block-based File System PMFS

DRAM

User Buffer

User

Virtual

Space

Kernel

Virtual

Space

Review: Memory-mapped I/O (mmap)

CSCI5550 Lec08: Persistent Memory 41
https://github.com/double-free/tiny-projects/tree/master/mmap

http://man7.org/linux/man-pages/man2/mmap.2.html

void * mmap (void *addr, size_t len,
int prot, int flags,
int fd, off_t offset);

DESCRIPTION

mmap() creates a new mapping in the virtual

address space of the calling process. The starting

address for the new mapping is specified in addr.

The length argument specifies the length of the

mapping. The prot argument describes the

desired memory protection of the mapping.

Outline

• Persistent Memory: Why and How

– Emerging Persistent Memory Technologies

– Characteristics and Integration Options

• Byte-addressable Persistent FS

– System Architecture

– Consistency: Short-Circuit Shadow Paging

– Write Ordering: Epoch Barriers

• Persistent Memory FS

– System Architecture

– Optimizations for Byte-Addressable PM

– Hybrid Approach for Consistency

– Protection from Stray Writes

– Write Ordering and Durability
CSCI5550 Lec08: Persistent Memory 42

Application

File System

Block Layer

Device Driver

Persistent Mem

User

Kernel

I/O Stack

System Software for Persistent Memory (EuroSys'14)

Hybrid Approach for Consistency (1/2)

• PMFS uses a hybrid approach for consistency.

– Metadata Updates:  Atomic in-place updates and  fine-

grained logging for (usually small)

– File Data Updates:  Page-based CoW

– Note: BPFS combines atomic in-place updates and CoW.

 Atomic In-place Update (for Metadata)

• PMFS leverages processor features for atomic in-

place updates, avoiding logging in more cases:

– 8-byte: Natively supported by the processor.

• Note: BPFS only supports 8-byte atomic in-place update.

– 16-byte: Supported via cmpxchg16b with LOCK prefix.

– 64-byte (i.e., cacheline): Supported if Restricted
Transactional Memory (RTM) is available.

CSCI5550 Lec08: Persistent Memory 43

Hybrid Approach for Consistency (2/2)

 Fine-grained Logging (for Metadata)

• PMFS logs metadata updates at cacheline granularity,

reducing large write amplification caused by CoW.

– The journal area, PMFS-Log, is a fixed-size circular buffer.

– Each 64B log entry describes an update to the metadata.

CSCI5550 Lec08: Persistent Memory 44

The processor

ensures that writes

to the same

cacheline are

never reordered.

Recall: PMFS Layout

CSCI5550 Lec08: Persistent Memory 45

• PM Address Space:

 Superblock and its

redundant copy

 A journal area

(called PMFS-Log)

 Dynamic allocated

“pages”

• B-trees are used to

organize the

metadata:

 Inode table

 Directory inodes

 File inodes

Outline

• Persistent Memory: Why and How

– Emerging Persistent Memory Technologies

– Characteristics and Integration Options

• Byte-addressable Persistent FS

– System Architecture

– Consistency: Short-Circuit Shadow Paging

– Write Ordering: Epoch Barriers

• Persistent Memory FS

– System Architecture

– Optimizations for Byte-Addressable PM

– Hybrid Approach for Consistency

– Protection from Stray Writes

– Write Ordering and Durability
CSCI5550 Lec08: Persistent Memory 46

Application

File System

Block Layer

Device Driver

Persistent Mem

User

Kernel

I/O Stack

System Software for Persistent Memory (EuroSys'14)

Protection from Stray Writes (1/2)

• PM is exposed to permanent corruption from “stray

writes” due to bugs in the OS or drivers.

– Why? PM can be directly accessed by memory-mapped I/O.

• PMFS protects PM from stray writes as follows:

– User-from-User: by exploiting existing paging mechanism.

– Kernel-from-User: by exploiting privilege levels.

– User-from-Kernel: by disallowing kernel to access the user

address space if SMAP is enabled.

– Kernel-from-Kernel: by proposing a write window scheme.

CSCI5550 Lec08: Persistent Memory 47

User Privilege Kernel Privilege

User Address Space
Process Isolation

(via Paging)
Supervisor Mode Access

Prevention (SMAP)

Kernel Address Space Privilege Levels Write Window

Protection from Stray Writes (2/2)

• Write Window for “kernel-from-kernel” protection:

CSCI5550 Lec08: Persistent Memory 48

PMFS leverages

the processor’s

write protect

control (CR0.WP).

Interrupts must

be disabled since

CR0.WP is not

saved across

interrupts or

context-switches.

Write

Window

CR: Control Register

Outline

• Persistent Memory: Why and How

– Emerging Persistent Memory Technologies

– Characteristics and Integration Options

• Byte-addressable Persistent FS

– System Architecture

– Consistency: Short-Circuit Shadow Paging

– Write Ordering: Epoch Barriers

• Persistent Memory FS

– System Architecture

– Optimizations for Byte-Addressable PM

– Hybrid Approach for Consistency

– Protection from Stray Writes

– Write Ordering and Durability
CSCI5550 Lec08: Persistent Memory 49

Application

File System

Block Layer

Device Driver

Persistent Mem

User

Kernel

I/O Stack

System Software for Persistent Memory (EuroSys'14)

50CSCI5550 Lec08: Persistent Memory

Software

L1/L2 Cache

Persistent Memory

L1/L2 Cache

Persistent Memory

L1/L2 Cache

Persistent Memory

epoch 1

epoch 2

Ineligible for

eviction!

time

Write Ordering and Durability (1/2)

• In BPFS, software simply issues epoch barriers and

hardware guarantees the ordering within an epoch.

• However, an epoch-based solution would require

non-trivial changes to cache and memory controllers.

– Such as tagged cacheline and write-back eviction policies.

Write Ordering and Durability (2/2)

• Instead, PMFS ensures the write ordering and

durability as follows:

 PMFS enables software to explicitly flush modified data

from volatile CPU caches.

• The existing implementations of the clflush (cacheline flush)

instruction are strongly ordered (with implicit fences), and may

suffer from serious performance problems.

• Therefore, PMFS revises the existing clflush instruction to provide

improved performance through weaker ordering.

 PMFS enforce the completion of cacheline flushing

through memory fences (such as sfence instruction).

• Reordering within a memory fence is possible, while ordering across

the memory fence is strongly guaranteed.

 PMFS proposes a hardware primitive (pm_wbarrier) to

guarantee the durability of the data written into PM.

CSCI5550 Lec08: Persistent Memory 51

Implementation Remarks (1/2)

• The prototype PMFS implementation is written as a

Linux kernel module and has about 10K lines of code.

 PMFS extends the eXecute In Place (XIP) interface

in the Linux kernel.

CSCI5550 Lec08: Persistent Memory 52https://slideplayer.com/slide/10360595/

Byte Addr-

essable

Persistent

Memory

XIP provides a set of

VFS callback

routines to avoid

the page cache and

block device layer.

xip_file_read/write
xip_file_mmap

Application’s User

Address Space

Application

Persistent

Memory

PMFS

Page Fault

Handler

mmap

Implementation Remarks (2/2)

 To support direct mapping of PM, PMFS registers a

page fault handler for the ranges in the application’s

address space that are backed by files in PMFS.

– This handler is invoked by the virtual memory subsystem.

CSCI5550 Lec08: Persistent Memory 53

The entire PM is mapped into

kernel virtual address space.

Review: Page Fault Handling

CSCI5550 Lec08: Persistent Memory 54

Process

1

2

3

page

swapping

page

fault
TLB miss

Summary

• Persistent Memory: Why and How

– Emerging Persistent Memory Technologies

– Characteristics and Integration Options

• Byte-addressable Persistent FS

– System Architecture

– Consistency: Short-Circuit Shadow Paging

– Write Ordering: Epoch Barriers

• Persistent Memory FS

– System Architecture

– Optimizations for Byte-Addressable PM

– Hybrid Approach for Consistency

– Protection from Stray Writes

– Write Ordering and Durability
CSCI5550 Lec08: Persistent Memory 55

Application

File System

Block Layer

Device Driver

Persistent Mem

User

Kernel

I/O Stack

